Implicit Cooperative Positioning in Vehicular Networks

نویسندگان

  • Gloria Soatti
  • Monica Nicoli
  • Nil Garcia
  • Benoît Denis
  • Ronald Raulefs
  • Henk Wymeersch
چکیده

Absolute positioning of vehicles is based on Global Navigation Satellite Systems (GNSS) combined with on-board sensors and high-resolution maps. In Cooperative Intelligent Transportation Systems (C-ITS), the positioning performance can be augmented by means of vehicular networks that enable vehicles to share location-related information. This paper presents an Implicit Cooperative Positioning (ICP) algorithm that exploits the Vehicle-to-Vehicle (V2V) connectivity in an innovative manner, avoiding the use of explicit V2V measurements such as ranging. In the ICP approach, vehicles jointly localize non-cooperative physical features (such as people, traffic lights or inactive cars) in the surrounding areas, and use them as common noisy reference points to refine their location estimates. Information on sensed features are fused through V2V links by a consensus procedure, nested within a message passing algorithm, to enhance the vehicle localization accuracy. As positioning does not rely on explicit ranging information between vehicles, the proposed ICP method is amenable to implementation with off-the-shelf vehicular communication hardware. The localization algorithm is validated in different traffic scenarios, including a crossroad area with heterogeneous conditions in terms of feature density and V2V connectivity, as well as a real urban area by using Simulation of Urban MObility (SUMO) for traffic data generation. Performance results show that the proposed ICP method can significantly improve the vehicle location accuracy compared to the stand-alone GNSS, especially in harsh environments, such as in urban canyons, where the GNSS signal is highly degraded or denied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Channel Capacity Perspective on Cooperative Positioning Algorithms for VANET

Dedicated Short Range Communication (DSRC) technology protocols form a platform for vehicle to vehicle communications. This communication platform will enable Vehicular Adhoc NETworks (VANTEs) through which many Intelligent Transport Systems applications including cooperative positioning of vehicles become possible. Cooperative positioning integrates the on board GPS information of vehicles in ...

متن کامل

Third-order Decentralized Safe Consensus Protocol for Inter-connected Heterogeneous Vehicular Platoons

In this paper, the stability analysis and control design of heterogeneous traffic flow is considered. It is assumed that the traffic flow consists of infinite number of cooperative non-identical vehicular platoons. Two different networks are investigated in stability analysis of heterogeneous traffic flow: 1) inter-platoon network which deals with the communication topology of lead vehicles and...

متن کامل

Integration of congestion and awareness control in vehicular networks

Cooperative vehicular networks require the exchange of positioning and basic status information between neighboring nodes to support vehicular applications. The exchange of information is based on the periodic transmission/reception of 1-hop broadcast messages on the so called control channel. The dynamic adaptation of the transmission parameters when broadcasting such messages will be key for ...

متن کامل

Information Fusion for Localization Within Vehicular Networks

Cooperative positioning (CP) is a localization technique originally developed for use across wireless sensor networks. With the emergence of Dedicated Short Range Communications (DSRC) infrastructure for use in Intelligent Transportation Systems (ITS), CP techniques can now be adapted for use in location determination across vehicular networks. In vehicular networks, the technique of CP fuses G...

متن کامل

Cooperative Localization with Energy Minimization in Vehicular Long-Thin Networks

In this paper, we propose a cooperative energy-efficient localization framework (CELF) for power saving in vehicular long-thin networks (VLTNs) with fleet cyclists using smart phones along a common cycling route. As cyclists upload their position data and download global fleet information, all power-consuming GPS receivers have to be turned on for obtaining their current locations. To minimize ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.01282  شماره 

صفحات  -

تاریخ انتشار 2017